This is a first course in complex analysis geared at least in part to prepare for the qualifying exam. Highlights of the course include: the Cauchy integral formulas, singularities and Conformal mappings. A more detailed list of topics is available in the graduate student bulletin's syllabus for the real and complex analysis qualifying exam. This course may omit a couple of those topics and include some that are not on the list (like the prime number theorem).

Suggested texts:
Complex Analysis by Elias Stein and Rami Shakarchi
Complex Analysis by Serge Lang
Complex Analysis by Lars Ahlfors
Functions of one complex variable by John B. Conway
Complex Analysis by Curtis McMullen http://www.math.harvard.edu/~ctm/home/text/class/harvard/213a/00/html/course/course.pdf

Real and Complex Analysis by Walter Rudin

Grade: 40% homework 60% tests, quizzes and in class work.

Homework: There will be many problems given. I will only assign some as homework to turn in. You may work with other students on the problems but you are required to write your own solution. I encourage you to think about or solve the other problems. Please talk to me about problems you have struggled with and solved or haven't been able to solve. I learned math mostly by doing problems whether I could solve them or not. I found that even if I couldn't solve a problem, working on it helped me remember, understand and appreciate the solution. There are many ways to learn mathematics.

Students with Disabilities: 

The University of Utah seeks to provide equal access to its programs, services and activities for people with disabilities. If you will need accommodations in the class, reasonable prior notice needs to be given to the Center for Disability Services, 162 Olpin Union Building, 581-5020 (V/TDD). CDS will work with you and the instructor to make arrangements for accommodations.