GEOG 3210/5210; ENVST 3210: Global Climate Change
General Education SF
Spring 2018

Professor: Andrea Brunelle, GC 4748, 585-5729, andrea.brunelle@geog.utah.edu
Office Hours: Tues/Thurs 12:30-1:30 (GC 4748) 3:20-4:00 (classroom area) and by appointment
TA: Tom Brussel, Wed/Fri 10:00 -11:30 (GC 4650), thomasbrussel@gmail.com
Prerequisite: Basic knowledge about Earth Systems and keen interest in learning more

Required Texts: Earth’s Climate: Past and Future, William Ruddiman 3rd Edition (you must have the 3rd edition!)

Also Required: Students must purchase a) a TurningTechnologies clicker (i.e., QT Device RCQR-01) and b) a subscription. Both are available at the bookstore. Students may opt to find clickers online and may search for them via ICN 9780997224801, which will bring them a bunch of options. Students with older clickers are encouraged to bring them to class and try them but there is no guarantee that these older models will work.

Course Web Page: https://utah.instructure.com

Grading:
- Participation (quizzes and in-class exercises) 15%
- CO₂ Research Project & Report 10%
- Current Topics Presentation 5%
- Exam I 30%
- Final Exam 40%

Course Description: Climate change has been occurring throughout Earth’s history. Inherent processes such as the planet’s tectonic activity, the Earth’s relationship to the Sun and other extraterrestrial bodies, as well as atmospheric and hydrological processes have dictated an ever-changing climate pattern over a variety of time scales. Speciation, adaptation, migration, and extinction of living organisms have frequently resulted from climate changes, but the relatively recent evolution and expansion of humans around the globe has cast climate change in a new light. Humans are altering the atmosphere in an unprecedented manner, and stand to suffer greatly from even relatively minor alterations in climate. Yet the complexity of the issue, the inertia of industry and energy use, and the reluctance of policymakers to risk economic backlash has created a politically charged atmosphere surrounding the study of global climate change. In this class, students will be introduced to the methods and review the evidence used to study climate changes of the past, and will examine the data being used to forecast climate change into the future.

Learning Objectives: By the end of the semester you should understand: 1) the role of CO₂ in regulating the Earth’s climate; 2) the long-term cycles of the Earth in and out of icehouse and greenhouse phases; 3) the cycles of glacial and interglacial periods within icehouse phases; 4) the effects of orbital variation on the Earth’s climate, and 5) the current concern about climate change.

Class Policies:
- Participation in is expected and will be reflected in your grade. Note: If you do not ATTEND you CANNOT participate. Reading assignments are expected to be completed BEFORE class and quizzes over the reading assignment or the previous lecture will occur each day. **There are NO make-up quizzes;** however the two lowest scores will be dropped. These quizzes will taken as individuals and in your groups, (you will be part of a group of 2-3 students) so be sure to attend class.

Once the student has their clicker and subscription code, they should go to the website below and follow the steps. This page will provide all instructions and information on how to manage your account, subscriptions and devices amongst other topics, or in other words, **how to properly register clickers.**
https://help.turningtechnologies.com —> under “Student Account” click “All platforms” —> Student Account Profile

We will take “practice” quizzes the first three class periods. It is YOUR responsibility to make sure your clicker is properly registered and you are receiving scores. Grades will start counting toward your class grade on January 17th.

Current Topics in Global Change- Each group will be required to find an article (newspaper, magazine, journal) and present a 5-8 minute summary of their topic with at least one power point slide. Time matters, practice it. Check out the grading rubric available on Canvas. You will lose points if your presentation is too short or too long or if your group hasn’t practiced and balanced the presentation!

Exams- There will be two exams. These cannot be made up unless the instructor is contacted PRIOR to the absence, and then only at the discretion of the professor. If a make-up exam is offered, it may take any form and must be taken at the University Testing Center where a fee will be imposed.

Research Project & Report - You will be collecting data on carbon dioxide concentrations in the Salt Lake Valley. These points refer to the data collection and the report you will generate for your results. There is a document on Canvas describing the project in detail and we’ll go over it in class.

Students taking 5210 will be held to a higher standard on the exams (greater depth of knowledge and more questions) and the report.

Essential Learning Outcomes: ELO’s are skills that should be gained in general education coursework that prepare students to be “effective 21st century global citizens” (U of U General Education Guidelines). Through the discussions over the course of the semester and with assignments described above, we will specifically work on several of these outcomes and they will be incorporated and assessed as follows:

- **Critical Thinking and Reasoning** - Critical thinking and reasoning skills will be developed and employed on a daily basis through the presentation, discussion, and consideration of scientific data on climate change. These skills will be assessed during the in-class and online quizzes and on the exams which will include short answer and essay responses.
- **Inquiry and Analysis** - The CO2 research project and report will require students to develop a research hypothesis, collect primary CO2 data, organize and analyze those data and then report on implications of what they found in the context of emissions and climate on local and global scales. The report will be the assessment tool for this outcome.
- **Oral Communication** – Each group of 2-3 students will be required to present on a current topic related to global climate change. Students will prepare their own presentation but also observe other student presentations, learning what makes an effective presentation and what doesn’t. The presentation evaluation will be the instrument for assessing this outcome. In addition, peer reviews will be conducted to help students critically consider their peer’s presentations.
- **Written Communication** – Student written communication skills will be assessed and constructive feedback provided during the research report and on the written portions of the exams.
- **Teamwork** – Students must work in a team on their current topics presentation. This will be assessed during the presentation as the instrument (and student grade) includes a variable on group preparation and cohesion. In addition, several of the in-class quizzes will be taken in their groups and require teamwork.

*Incompletes will only be given at my discretion and only if the student is passing at the time.
*You are responsible for all information presented in lecture and over the course website (Canvas).
Preliminary Lecture & Reading Schedule (subject to change, WATCH Canvas FOR UPDATES!):

<table>
<thead>
<tr>
<th>WEEK OF:</th>
<th>Topic</th>
<th>Reading</th>
</tr>
</thead>
</table>
| Jan 7 | Introductions
Climate Change Foundations | Complete the syllabus quiz! |
| Jan 14 | Overview of Climate Science & Earth’s Climate System Today
Climate Archives, Data, and Models | Chapter 1
Chapter 2/3 |
| Jan 21 | CO₂ and Long term Climate
Continue Plate Tectonics and CO₂ | Chapter 4
Chapter 5 |
| Jan 28 | Greenhouse Earth
Catchup & CO₂ Project intro | Chapter 6 |
| Feb 4 | “Cracking the Ice Age”
From Greenhouse to Icehouse | Viewing Guide Quiz
Chapter 7 |
| Feb 11 | From Greenhouse to Icehouse
Finish up and Review parts 1 & 2 | Chapter 7 |
| Feb 18 | **EXAM I (Andrea at PACLIM)**
Orbital Variations and Insolation | Chapter 8 |
| Feb 25 | Insolation Control of Monsoons
Insolation Control of Ice Sheets | Chapter 9
Chapter 10 |
| Mar 4 | Orbital Scale Changes in CO₂ and CH₄
Orbital Scale Interactions | Chapter 11
Chapter 12 |
| Mar 11 | **Spring Break!** | |
| Mar 18 | The Last Glacial Maximum
Climate Since the Last Glacial Max | Chapter 13
Chapter 14 |
| Mar 25 | Humans and Preindustrial Climate
Climate Changes in the last 1000 yrs | Chapter 16
Chapter 17 |
| Apr 1 | Climate Change since 1850
Global Dimming *(Andrea at AAG)* | Chapter 18
Viewing Guide Quiz |
| Apr 8 | Warming in the last 125 years
Current & Future Climate Change | Chapter 19
Chapter 20 |
| Apr 15 | Current & Future Climate Change
Chasing Ice *(Andrea in Bozeman)* | Chapter 20
Viewing Guide Quiz
CO₂ Monitoring report due 4/15 to Canvas by 5:00 pm! |
| Apr 22 | Climate Change Implications
What we can do+ Regina Pistilli from CCL | Pacala and Socolow 2004; Socolow 2011; 4 Degrees (on Canvas) |

FINAL EXAM: Thursday, April 25, 2019 1:00 – 3:00 pm

Additional readings may also be assigned as appropriate for the discussion topic

The University of Utah seeks to provide equal access to its programs, services and activities for people with disabilities. If you will need accommodations in the class, reasonable prior notice needs to be given to the Center for Disability Services, 162 Olpin Union Building, 581-5020 (V/TDD). CDS will work with you and I to make arrangements for accommodations. All written information in this course can be made available in alternative format with prior notification to the Center for Disability Services.
"Some of the writings, lectures, films, or presentations in this course may include material that conflicts with the core beliefs of some students. Please review the syllabus carefully to see if the course is one that you are committed to taking. If you have a concern, please discuss it with me at your earliest convenience." - Per Accommodations Policy, Office of Academic Affairs

Geography Department Academic Misconduct Policy

Academic misconduct will not be tolerated. Penalties may include failure of an assignment, the entire course, and/or the filing of formal charges with appropriate university authorities. Academic misconduct includes, but is not limited to, cheating, misrepresenting one’s work, and plagiarism:

• Cheating involves the unauthorized possession or use of information in an academic exercise, including unauthorized communication with another person during an exercise such as an examination.
• Misrepresenting one’s work includes, but is not limited to, representing material prepared by another as one’s own work or submitting the same work in more than one course without prior permission of all instructors.
• Plagiarism means the intentional unacknowledged use or incorporation of any other person’s work in one’s own work offered for academic consideration or public presentation.

• When you gather information from any source (internet, book, newspaper, journal article, etc), you need to paraphrase. This means changing the words from the original source into your own. Even though the words are yours, the content is still from somewhere else, so it still needs a citation.
• The way that I do this is I’ll read something and make notes on what I read. Then I put the original source away and explain it using my words and notes.
• You can take text directly from a source if you put the material in quotation marks, cite the source and the page number from the excerpt. However, I don’t want to see any direct quotations in any of your work. I want paraphrasing with appropriate citations.
• Here is a good and bad example of paraphrasing from the Wikipedia entry on Milutin Milankovitch.

BAD:
Milutin Milankovitch was a Serbian mathematician who gave two fundamental contributions to global science. These include the “Canon of the Earth’s Insolation” which characterizes the climates of all the planets in the solar system. The other contribution is the explanation of the Earth’s long-term climate changes caused by the position of the Earth and Sun.

GOOD:
Milutin Milankovitch made many contributions to our understanding of the Earth’s climate. He was widely trained in the Earth, Geological and Astronomical sciences but is best known as a Serbian mathematician and astronomer. His most important contribution was his explanation for the ice ages, which is based on changes in the Earth’s relationship with the Sun, known as Milankovitch Cycles (Wikipedia, 2012).
References Cited